Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
1.
Cancers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672616

ABSTRACT

BACKGROUND: Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS: We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS: We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS: Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.

3.
Article in English | MEDLINE | ID: mdl-38300187

ABSTRACT

PURPOSE: Reirradiation is increasingly used in children and adolescents/young adults (AYA) with recurrent primary central nervous system tumors. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) reirradiation task force aimed to quantify risks of brain and brain stem necrosis after reirradiation. METHODS AND MATERIALS: A systematic literature search using the PubMed and Cochrane databases for peer-reviewed articles from 1975 to 2021 identified 92 studies on reirradiation for recurrent tumors in children/AYA. Seventeen studies representing 449 patients who reported brain and brain stem necrosis after reirradiation contained sufficient data for analysis. While all 17 studies described techniques and doses used for reirradiation, they lacked essential details on clinically significant dose-volume metrics necessary for dose-response modeling on late effects. We, therefore, estimated incidences of necrosis with an exact 95% CI and qualitatively described data. Results from multiple studies were pooled by taking the weighted average of the reported crude rates from individual studies. RESULTS: Treated cancers included ependymoma (n = 279 patients; 7 studies), medulloblastoma (n = 98 patients; 6 studies), any CNS tumors (n = 62 patients; 3 studies), and supratentorial high-grade gliomas (n = 10 patients; 1 study). The median interval between initial and reirradiation was 2.3 years (range, 1.2-4.75 years). The median cumulative prescription dose in equivalent dose in 2-Gy fractions (EQD22; assuming α/ß value = 2 Gy) was 103.8 Gy (range, 55.8-141.3 Gy). Among 449 reirradiated children/AYA, 22 (4.9%; 95% CI, 3.1%-7.3%) developed brain necrosis and 14 (3.1%; 95% CI, 1.7%-5.2%) developed brain stem necrosis with a weighted median follow-up of 1.6 years (range, 0.5-7.4 years). The median cumulative prescription EQD22 was 111.4 Gy (range, 55.8-141.3 Gy) for development of any necrosis, 107.7 Gy (range, 55.8-141.3 Gy) for brain necrosis, and 112.1 Gy (range, 100.2-117 Gy) for brain stem necrosis. The median latent period between reirradiation and the development of necrosis was 5.7 months (range, 4.3-24 months). Though there were more events among children/AYA undergoing hypofractionated versus conventionally fractionated reirradiation, the differences were not statistically significant (P = .46). CONCLUSIONS: Existing reports suggest that in children/AYA with recurrent brain tumors, reirradiation with a total EQD22 of about 112 Gy is associated with an approximate 5% to 7% incidence of brain/brain stem necrosis after a median follow-up of 1.6 years (with the initial course of radiation therapy being given with conventional prescription doses of ≤2 Gy per fraction and the second course with variable fractionations). We recommend a uniform approach for reporting dosimetric endpoints to derive robust predictive models of late toxicities following reirradiation.

4.
Adv Radiat Oncol ; 9(1): 101284, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38260213

ABSTRACT

Purpose: Data are limited on radiation-induced lung toxicities (RILT) after multiple courses of lung stereotactic body radiation therapy (SBRT). We herein analyze a large cohort of patients to explore the clinical and dosimetric risk factors associated with RILT in such settings. Methods and Materials: A single institutional database of patients treated with multiple courses of lung SBRT between January 2014 and December 2019 was analyzed. Grade 2 or higher (G2+) RILT after the last course of SBRT was the primary endpoint. Composite plans were generated with advanced algorithms including deformable registration and equivalent dose adjustment. Logistic regression analyses were performed to examine correlations between patient or treatment factors including dosimetry and G2+ RILT. Risk stratification of patients and lung constraints based on acceptable normal tissue complication probability were calculated based on risk factors identified. Results: Among 110 eligible patients (56 female and 54 male), there were 64 synchronous (58.2%; defined as 2 courses of SBRT delivered within 30 days) and 46 metachronous (41.8%) courses of SBRT. The composite median lung V20, lung V5, and mean lung dose were 9.9% (interquartile range [IQR], 7.3%-12.4%), 32.2% (IQR, 25.5%-40.1%), and 7.0 Gy (IQR, 5.5 Gy-8.6 Gy), respectively. With a median follow-up of 21.1 months, 30 patients (27.3%) experienced G2+ RILT. Five patients (4.5%) developed G3 RILT, and 1 patient (0.9%) developed G4 RILT, and no patients developed G5 RILT. On multivariable regression analysis, female sex (odds ratio [OR], 4.35; 95% CI, 1.49%-14.3%; P = .01), synchronous SBRT (OR, 8.78; 95% CI, 2.27%-47.8%; P = .004), prior G2+ RILT (OR, 29.8; 95% CI, 2.93%-437%; P = .007) and higher composite lung V20 (OR, 1.18; 95% CI, 1.02%-1.38%; P = .030) were associated with significantly higher likelihood of G2+ RILT. Conclusions: Our data suggest an acceptable incidence of G2+ RILT after multiple courses of lung SBRT. Female sex, synchronous SBRT, prior G2+ RILT, and higher composite lung V20 may be risk factors for G2+ RILT.

5.
Article in English | MEDLINE | ID: mdl-38276939

ABSTRACT

The development of normal tissue radiation dose-response models for children with cancer has been challenged by many factors, including small sample sizes; the long length of follow-up needed to observe some toxicities; the continuing occurrence of events beyond the time of assessment; the often complex relationship between age at treatment, normal tissue developmental dynamics, and age at assessment; and the need to use retrospective dosimetry. Meta-analyses of published pediatric outcome studies face additional obstacles of incomplete reporting of critical dosimetric, clinical, and statistical information. This report describes general methods used to address some of the pediatric modeling issues. It highlights previous single- and multi-institutional pediatric dose-response studies and summarizes how each PENTEC taskforce addressed the challenges and limitations of the reviewed publications in constructing, when possible, organ-specific dose-effect models.

6.
Int J Radiat Oncol Biol Phys ; 118(4): 931-943, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-36682981

ABSTRACT

We sought to systematically review and summarize dosimetric factors associated with radiation-induced brachial plexopathy (RIBP) after stereotactic body radiation therapy (SBRT) or hypofractionated image guided radiation therapy (HIGRT). From published studies identified from searches of PubMed and Embase databases, data quantifying risks of RIBP after 1- to 10-fraction SBRT/HIGRT were extracted and summarized. Published studies have reported <10% risks of RIBP with maximum doses (Dmax) to the inferior aspect of the brachial plexus of 32 Gy in 5 fractions and 25 Gy in 3 fractions. For 10-fraction HIGRT, risks of RIBP appear to be low with Dmax < 40 to 50 Gy. For a given dose value, greater risks are anticipated with point volume-based metrics (ie, D0.03-0.035cc: minimum dose to hottest 0.03-0.035 cc) versus Dmax. With SBRT/HIGRT, there were insufficient published data to predict risks of RIBP relative to brachial plexus dose-volume exposure. Minimizing maximum doses and possibly volume exposure of the brachial plexus can reduce risks of RIBP after SBRT/HIGRT. Further study is needed to better understand the effect of volume exposure on the brachial plexus and whether there are location-specific susceptibilities along or within the brachial plexus structure.


Subject(s)
Brachial Plexus Neuropathies , Brachial Plexus , Radiation Injuries , Radiosurgery , Humans , Radiosurgery/adverse effects , Brachial Plexus/radiation effects , Brachial Plexus Neuropathies/etiology , Brachial Plexus Neuropathies/prevention & control , Radiometry
7.
Med Phys ; 51(2): 1405-1414, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37449537

ABSTRACT

BACKGROUND: Quality assurance of deformable image registration (DIR) is challenging because the ground truth is often unavailable. In addition, current approaches that rely on artificial transformations do not adequately resemble clinical scenarios encountered in adaptive radiotherapy. PURPOSE: We developed an atlas-based method to create a variety of patient-specific serial digital phantoms with CBCT-like image quality to assess the DIR performance for longitudinal CBCT imaging data in adaptive lung radiotherapy. METHODS: A library of deformations was created by extracting the longitudinal changes observed between a planning CT and weekly CBCT from an atlas of lung radiotherapy patients. The planning CT of an inquiry patient was first deformed by mapping the deformation pattern from a matched atlas patient, and subsequently appended with CBCT artifacts to imitate a weekly CBCT. Finally, a group of digital phantoms around an inquiry patient was produced to simulate a series of possible evolutions of tumor and adjacent normal structures. We validated the generated deformation vector fields (DVFs) to ensure numerically and physiologically realistic transformations. The proposed framework was applied to evaluate the performance of the DIR algorithm implemented in the commercial Eclipse treatment planning system in a retrospective study of eight inquiry patients. RESULTS: The generated DVFs were inverse consistent within less than 3 mm and did not exhibit unrealistic folding. The deformation patterns adequately mimicked the observed longitudinal anatomical changes of the matched atlas patients. Worse Eclipse DVF accuracy was observed in regions of low image contrast or artifacts. The structure volumes exhibiting a DVF error magnitude of equal or more than 2 mm ranged from 24.5% (spinal cord) to 69.2% (heart) and the maximum DVF error exceeded 5 mm for all structures except the spinal cord. Contour-based evaluations showed a high degree of alignment with dice similarity coefficients above 0.8 in all cases, which underestimated the overall DVF accuracy within the structures. CONCLUSIONS: It is feasible to create and augment digital phantoms based on a particular patient of interest using multiple series of deformation patterns from matched patients in an atlas. This can provide a semi-automated procedure to complement the quality assurance of CT-CBCT DIR and facilitate the clinical implementation of image-guided and adaptive radiotherapy that involve longitudinal CBCT imaging studies.


Subject(s)
Spiral Cone-Beam Computed Tomography , Humans , Retrospective Studies , Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Lung/diagnostic imaging , Image Processing, Computer-Assisted/methods , Algorithms
8.
Radiother Oncol ; 190: 109983, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926331

ABSTRACT

PURPOSE: Disease progression after definitive stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer (NSCLC) occurs in 20-40% of patients. Here, we explored published and novel pre-treatment CT and PET radiomics features to identify patients at risk of progression. MATERIALS/METHODS: Published CT and PET features were identified and explored along with 15 other CT and PET features in 408 consecutively treated early-stage NSCLC patients having CT and PET < 3 months pre-SBRT (training/set-aside validation subsets: n = 286/122). Features were associated with progression-free survival (PFS) using bootstrapped Cox regression (Bonferroni-corrected univariate predictor: p ≤ 0.002) and only non-strongly correlated predictors were retained (|Rs|<0.70) in forward-stepwise multivariate analysis. RESULTS: Tumor diameter and SUVmax were the two most frequently reported features associated with progression/survival (in 6/20 and 10/20 identified studies). These two features and 12 of the 15 additional features (CT: 6; PET: 6) were candidate PFS predictors. A re-fitted model including diameter and SUVmax presented with the best performance (c-index: 0.78; log-rank p-value < 0.0001). A model built with the two best additional features (CTspiculation1 and SUVentropy) had a c-index of 0.75 (log-rank p-value < 0.0001). CONCLUSIONS: A re-fitted pre-treatment model using the two most frequently published features - tumor diameter and SUVmax - successfully stratified early-stage NSCLC patients by PFS after receiving SBRT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiomics , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Tomography, X-Ray Computed , Positron Emission Tomography Computed Tomography , Retrospective Studies , Prognosis
9.
Article in English | MEDLINE | ID: mdl-38069917

ABSTRACT

Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.

10.
Article in English | MEDLINE | ID: mdl-38154510

ABSTRACT

PURPOSE: Larger tumors are underrepresented in most prospective trials on stereotactic body radiation therapy (SBRT) for inoperable non-small cell lung cancer (NSCLC). We performed this phase 1 trial to specifically study the maximum tolerated dose (MTD) of SBRT for NSCLC >3 cm. METHODS AND MATERIALS: A 3 + 3 dose-escalation design (cohort A) with an expansion cohort at the MTD (cohort B) was used. Patients with inoperable NSCLC >3 cm (T2-4) were eligible. Select ipsilateral hilar and single-station mediastinal nodes were permitted. The initial SBRT dose was 40 Gy in 5 fractions, with planned escalation to 50 and 60 Gy in 5 fractions. Adjuvant chemotherapy was mandatory for cohort A and optional for cohort B, but no patients in cohort B received chemotherapy. The primary endpoint was SBRT-related acute grade (G) 4+ or persistent G3 toxicities (Common Terminology Criteria for Adverse Events version 4.03). Secondary endpoints included local failure (LF), distant metastases, disease progression, and overall survival. RESULTS: The median age was 80 years; tumor size was >3 cm and ≤5 cm in 20 (59%) and >5 cm in 14 patients (41%). In cohort A (n = 9), 3 patients treated to 50 Gy experienced G3 radiation pneumonitis (RP), thus defining the MTD. In the larger dose-expansion cohort B (n = 25), no radiation therapy-related G4+ toxicities and no G3 RP occurred; only 2 patients experienced G2 RP. The 2-year cumulative incidence of LF was 20.2%, distant failure was 34.7%, and disease progression was 54.4%. Two-year overall survival was 53%. A biologically effective dose (BED) <100 Gy was associated with higher LF (P = .006); advanced stage and higher neutrophil/lymphocyte ratio were associated with greater disease progression (both P = .004). CONCLUSIONS: Fifty Gy in 5 fractions is the MTD for SBRT to tumors >3 cm. A higher BED is associated with fewer LFs even in larger tumors. Cohort B appears to have had less toxicity, possibly due to the omission of chemotherapy.

11.
Article in English | MEDLINE | ID: mdl-37999712

ABSTRACT

Pediatric Normal Tissue Effects in the Clinic (PENTEC) is an international multidisciplinary effort that aims to summarize normal-tissue toxicity risks based on published dose-volume data from studies of children and adolescents treated with radiation therapy (RT) for cancer. With recognition that children are uniquely vulnerable to treatment-related toxic effects, our mission and challenge was to assemble our group of physicians (radiation and pediatric oncologists, subspecialists), physicists with clinical and modeling expertise, epidemiologists, and other scientists to develop evidence-based radiation dosimetric guidelines, as affected by developmental status and other factors (eg, other cancer therapies and host factors). These quantitative toxicity risk estimates could serve to inform RT planning and thereby improve outcomes. Tandem goals included the description of relevant medical physics issues specific to pediatric RT and the proposal of dose-volume outcome reporting standards to inform future studies. We created 19 organ-specific task forces and methodology to unravel the wealth of data from heterogeneous published studies. This report provides a high-level summary of PENTEC's genesis, methods, key findings, and associated concepts that affected our work and an explanation of how our findings may be interpreted and applied in the clinic. We acknowledge our predecessors in these efforts, and we pay homage to the children whose lives informed us and to future generations who we hope will benefit from this additional step in our path forward.

12.
Article in English | MEDLINE | ID: mdl-37804257

ABSTRACT

PURPOSE: The PENTEC (Pediatric Normal Tissue Effects in the Clinic) task force aimed to quantify effects of radiation therapy (RT) dose to the female reproductive organs after treatment for childhood cancer. METHODS AND MATERIALS: Relevant studies published 1970 to 2017 were identified systematically through PubMed, Medline, and Cochrane databases with additional articles before 2021 identified by the group. Two large studies reported sufficient data to allow modeling of acute ovarian failure (AOF; loss of function ≤5 year from diagnosis) and premature ovarian insufficiency (POI; loss of function at attained age <40 years) based on maximum dose to least affected ovary. Although normal tissue complication probability modeling was not feasible for the uterus due to limited data, the relationship between ultrasound-measured uterine volume and estimated amount of RT was plotted. Limited data regarding vaginal toxicity were available. RESULTS: The risk of AOF increases with RT dose to least affected ovary, alkylating agent cumulative dose (cyclophosphamide equivalent dose [CED] in g/m2), age at RT, and stem cell transplantation: Two Gy to the least affected ovary resulted in AOF risk of 1% to 5% (CED = 0, risk increasing with age), 4% to 7% (CED = 10 g/m2, risk increasing with age), and 6% to 13% (CED = 30 g/m2, risk increasing with age). For patients aged 1 and 20 years at time of RT, AOF risk was ≥50% at doses of 24 Gy and 20 Gy with no alkylating chemotherapy, 22.5 Gy and 17 Gy with intermediate alkylator dose (10 g/m2), and 17 Gy and 13 Gy with high alkylator dose (30 g/m2). Risk of POI increases with survivor (attained) age (rather than age at time of RT), radiation dose to least affected ovary, and alkylator dose. Data review suggested that higher radiation doses to the uterus are associated with uterine toxicity, with uterine size considerably restricted after 12 Gy. Vaginal radiation in children is associated with high toxicity risk, although dose-volume data are not available for quantification. CONCLUSIONS: Risk of AOF increases with age at RT, CED exposure, and RT dose; risk of POI likewise increases with RT dose, CED exposure, and survivor age. Both AOF and POI are expected to affect fertility and estrogen production. Data suggest that RT uterine dose >12 Gy may be associated with uterine size restriction. Adult literature suggests that maintaining vaginal dose <5 Gy may limit toxicity. Treatment of life-threatening malignancy remains a priority over reproductive preservation; however, when possible, radiation and surgical techniques should be considered to minimize dose to least affected ovary, uterus, and vagina. Survivors should receive endocrine and gynecologic support; those desiring pregnancy should be counseled early to maximize reproductive options.

13.
Comput Methods Programs Biomed ; 242: 107833, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863013

ABSTRACT

BACKGROUND AND OBJECTIVES: Radiotherapy prescriptions currently derive from population-wide guidelines established through large clinical trials. We provide an open-source software tool for patient-specific prescription determination using personalized dose-response curves. METHODS: We developed ROE, a plugin to the Computational Environment for Radiotherapy Research to visualize predicted tumor control and normal tissue complication simultaneously, as a function of prescription dose. ROE can be used natively with MATLAB and is additionally made accessible in GNU Octave and Python, eliminating the need for commercial licenses. It provides a curated library of published and validated predictive models and incorporates clinical restrictions on normal tissue outcomes. ROE additionally provides batch-mode tools to evaluate and select among different fractionation schemes and analyze radiotherapy outcomes across patient cohorts. CONCLUSION: ROE is an open-source, GPL-copyrighted tool for interactive exploration of the dose-response relationship to aid in radiotherapy planning. We demonstrate its potential clinical relevance in (1) improving patient awareness by quantifying the risks and benefits of a given treatment protocol (2) assessing the potential for dose escalation across patient cohorts and (3) estimating accrual rates of new protocols.


Subject(s)
Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Software , Neoplasms/radiotherapy , Radiotherapy Dosage , Prescriptions
14.
Article in English | MEDLINE | ID: mdl-37061912

ABSTRACT

PURPOSE: Radiation therapy (RT) is an essential component in the treatment of many pediatric malignancies. Thoracic RT may expose the heart to radiation dose and thereby increase the risk of late cardiac disease. This comprehensive review from the Pediatric Normal Tissue Effects in the Clinic (PENTEC) initiative focused on late cardiac disease in survivors of childhood cancer treated with RT. METHODS AND MATERIALS: This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. We identified 1496 articles; 4 were included for dose-response modeling between mean cardiac radiation dose and risk of late coronary artery disease, heart failure (HF), valvular disease, and any cardiac disease. RESULTS: For each 10-Gy increase in corrected mean cardiac radiation dose in 1.8- to 2.0-Gy fractions, we estimated a hazard ratio of 2.01 (95% confidence interval [CI], 1.79-2.25) for coronary artery disease, of 1.87 (95% CI, 1.70-2.06) for HF, of 1.87 (95% CI, 1.78-1.96) for valvular disease, and of 1.88 (95% CI, 1.75-2.03) for any cardiac disease. From the same model, for each 100-mg/m2 increase in cumulative anthracycline dose, the hazard ratio for the development of HF was 1.93 (95% CI, 1.58-2.36), equivalent to an increase in mean heart dose of approximately 10.5 Gy. Other nontreatment factors were inconsistently reported in the analyzed articles. CONCLUSIONS: Radiation dose to the heart increases the risk of late cardiac disease, but survivors of childhood cancer who receive a mean dose <10 Gy at standard fractionation are at low absolute risk (<∼2% approximately 30 years after exposure) of late cardiac disease in the absence of anthracycline exposure. Minimizing cardiac radiation dose is especially relevant in children receiving anthracyclines. When cardiac sparing is not possible, we recommend prioritizing target coverage. It is likely that individual cardiac substructure doses will be a better predictor of specific cardiac diseases than mean dose, and we urge the pediatric oncology community to further study these relationships.

15.
Article in English | MEDLINE | ID: mdl-37003845

ABSTRACT

PURPOSE: We describe the methods used to estimate the accuracy of dosimetric data found in literature sources used to construct the Pediatric Normal Tissue Effects in the Clinic (PENTEC) dose-response models, summarize these findings of each organ-specific task force, describe some of the dosimetric challenges and the extent to which these efforts affected the final modeling results, and provide guidance on the interpretation of the dose-response results given the various dosimetric uncertainties. METHODS AND MATERIALS: Each of the PENTEC task force medical physicists reviewed all the journal articles used for dose-response modeling to identify, categorize, and quantify dosimetric uncertainties. These uncertainties fell into 6 broad categories. A uniform nomenclature was developed for describing the "dosimetric quality" of the articles used in the PENTEC reviews. Among the multidisciplinary experts in the PENTEC effort, the medical physicists were charged with the dosimetric evaluation, as they are most expert in this subject. RESULTS: The percentage dosimetric uncertainty was estimated for each late effect endpoint for all PENTEC organ reports. Twelve specific sources of dose uncertainty were identified related to the 6 broad categories. The most common reason for organ dose uncertainty was that prescribed dose rather than organ dose was reported. Percentage dose uncertainties ranged from 5% to 200%. Systematic uncertainties were used to correct the dose component of the models. Random uncertainties were also described in each report and in some cases used to modify dose axis error bars. In addition, the potential effects of dose binning were described. CONCLUSIONS: PENTEC reports are designed to provide guidance to radiation oncologists and treatment planners for organ dose constraints. It is critical that these dose constraint recommendations are as accurate as possible, acknowledging the large error bars for many. Achieving this accuracy is important as it enables clinicians to better balance target dose coverage with risk of late effects. Evidence-based dose constraints for pediatric patients have been lacking and, in this regard, PENTEC fills an important unmet need. One must be aware of the limitations of our recommendations, and that for some organ systems, large uncertainties exist in the dose-response model because of clinical endpoint uncertainty, dosimetric uncertainty, or both.

16.
Int J Radiat Oncol Biol Phys ; 117(1): 53-63, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36918130

ABSTRACT

PURPOSE: The optimal dose and fractionation of stereotactic body radiation therapy (SBRT) for locally advanced pancreatic cancer (LAPC) have not been defined. Single-fraction SBRT was associated with more gastrointestinal toxicity, so 5-fraction regimens have become more commonly employed. We aimed to determine the safety and maximally tolerated dose of 3-fraction SBRT for LAPC. METHODS AND MATERIALS: Two parallel phase 1 dose escalation trials were conducted from 2016 to 2019 at Memorial Sloan Kettering Cancer Center and University of Colorado. Patients with histologically confirmed LAPC without distant progression after at least 2 months of induction chemotherapy were eligible. Patients received 3-fraction linear accelerator-based SBRT at 3 dose levels, 27, 30, and 33 Gy, following a modified 3+3 design. Dose-limiting toxicity, defined as grade ≥3 gastrointestinal toxicity within 90 days, was scored by National Cancer Institute Common Terminology Criteria for Adverse Events, version 4. The secondary endpoints included cumulative incidence of local failure (LF) and distant metastasis (DM), as well as progression-free and overall survival PFS and OS, respectively, toxicity, and quality of life (QoL) using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (QLQ-C30) and the pancreatic cancer-specific QLQ-PAN26 questionnaire. RESULTS: Twenty-four consecutive patients were enrolled (27 Gy: 9, 30 Gy: 8, 33 Gy: 7). The median (range) age was 67 (52-79) years, and 12 (50%) had a head/uncinate tumor location, with a median tumor size of 3.8 (1.1-11) cm and CA19-9 of 60 (1-4880) U/mL. All received chemotherapy for a median of 4 (1.4-10) months. There were no grade ≥3 toxicities. Two-year rates (95% confidence interval) of LF, DM, PFS, and OS were 31.7% (8.6%-54.8%), 70.2% (49.7%-90.8%), 20.8% (4.6%-37.1%), and 29.2% (11.0%-47.4%), respectively. Three- and 6-month QoL assessment showed no detriment. CONCLUSIONS: For select patients with LAPC, dose escalation to 33 Gy in 3 fractions resulted in no dose-limiting toxicities, no detriments to QoL, and disease outcomes comparable with conventional RT. Further exploration of SBRT schemes to maximize tumor control while enabling efficient integration with systemic therapy is warranted.


Subject(s)
Neoplasms, Second Primary , Pancreatic Neoplasms , Radiosurgery , Humans , Aged , Quality of Life , Radiosurgery/adverse effects , Pancreas , Pancreatic Neoplasms/radiotherapy
17.
Med Phys ; 50 Suppl 1: 122-124, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36751020

ABSTRACT

Radiation therapy is a double-edged sword which damages both tumor and normal cells. Achieving treatments with high tumor control probability (TCP) yet low normal tissue complication probability (NTCP) is often a struggle because we rarely have a unified understanding of the dosimetric and clinical correlates of the desired outcomes. I am fortunate to have participated in some of these struggles, including analyzing and using in-house data and being involved in the AAPM and ASTRO "TEC" projects-QUANTEC (Quantitatie Analysis of Normal Tissue Effects in the Clinic), HyTEC (Hypofractionated Treatment Effects in the Clinic) and PENTEC (Pediatric Normal Tissue Effects in the Clinic).


Subject(s)
Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Child , Neoplasms/radiotherapy , Probability , Radiometry , Radiotherapy Dosage
18.
Radiother Oncol ; 182: 109583, 2023 05.
Article in English | MEDLINE | ID: mdl-36842665

ABSTRACT

INTRODUCTION: Radiation-induced brachial plexopathy (RIBP), resulting in symptomatic motor or sensory deficits of the upper extremity, is a risk after exposure of the brachial plexus to therapeutic doses of radiation. We sought to model dosimetric factors associated with risks of RIBP after stereotactic body radiotherapy (SBRT). METHODS: From a prior systematic review, 4 studies were identified that included individual patient data amenable to normal tissue complication probability (NTCP) modelling after SBRT for apical lung tumors. Two probit NTCP models were derived: one from 4 studies (including 221 patients with 229 targets and 18 events); and another from 3 studies (including 185 patients with 192 targets and 11 events) that similarly contoured the brachial plexus. RESULTS: NTCP models suggest ≈10% risks associated with brachial plexus maximum dose (Dmax) of ∼32-34 Gy in 3 fractions and ∼40-43 Gy in 5 fractions. RIBP risks increase with increasing brachial plexus Dmax. Compared to previously published data from conventionally-fractionated or moderately-hypofractionated radiotherapy for breast, lung and head and neck cancers (which tend to utilize radiation fields that circumferentially irradiate the brachial plexus), SBRT (characterized by steep dose gradients outside of the target volume) exhibits a much less steep dose-response with brachial plexus Dmax > 90-100 Gy in 2-Gy equivalents. CONCLUSIONS: A dose-response for risk of RIBP after SBRT is observed relative to brachial plexus Dmax. Comparisons to data from less conformal radiotherapy suggests potential dose-volume dependences of RIBP risks, though published data were not amenable to NTCP modelling of dose-volume measures associated with RIBP after SBRT.


Subject(s)
Brachial Plexus Neuropathies , Radiosurgery , Humans , Radiosurgery/adverse effects , Radiotherapy Dosage , Retrospective Studies , Brachial Plexus Neuropathies/etiology
19.
Phys Med Biol ; 68(4)2023 02 07.
Article in English | MEDLINE | ID: mdl-36652721

ABSTRACT

Objective.This work aims to generate realistic anatomical deformations from static patient scans. Specifically, we present a method to generate these deformations/augmentations via deep learning driven respiratory motion simulation that provides the ground truth for validating deformable image registration (DIR) algorithms and driving more accurate deep learning based DIR.Approach.We present a novel 3D Seq2Seq deep learning respiratory motion simulator (RMSim) that learns from 4D-CT images and predicts future breathing phases given a static CT image. The predicted respiratory patterns, represented by time-varying displacement vector fields (DVFs) at different breathing phases, are modulated through auxiliary inputs of 1D breathing traces so that a larger amplitude in the trace results in more significant predicted deformation. Stacked 3D-ConvLSTMs are used to capture the spatial-temporal respiration patterns. Training loss includes a smoothness loss in the DVF and mean-squared error between the predicted and ground truth phase images. A spatial transformer deforms the static CT with the predicted DVF to generate the predicted phase image. 10-phase 4D-CTs of 140 internal patients were used to train and test RMSim. The trained RMSim was then used to augment a public DIR challenge dataset for training VoxelMorph to show the effectiveness of RMSim-generated deformation augmentation.Main results.We validated our RMSim output with both private and public benchmark datasets (healthy and cancer patients). The structure similarity index measure (SSIM) for predicted breathing phases and ground truth 4D CT images was 0.92 ± 0.04, demonstrating RMSim's potential to generate realistic respiratory motion. Moreover, the landmark registration error in a public DIR dataset was improved from 8.12 ± 5.78 mm to 6.58mm ± 6.38 mm using RMSim-augmented training data.Significance.The proposed approach can be used for validating DIR algorithms as well as for patient-specific augmentations to improve deep learning DIR algorithms. The code, pretrained models, and augmented DIR validation datasets will be released athttps://github.com/nadeemlab/SeqX2Y.


Subject(s)
Four-Dimensional Computed Tomography , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Computer Simulation , Four-Dimensional Computed Tomography/methods , Algorithms , Motion
20.
Phys Imaging Radiat Oncol ; 25: 100410, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36687507

ABSTRACT

Background and purpose: Coronary calcifications are associated with coronary artery disease in patients undergoing radiotherapy (RT) for non-small cell lung cancer (NSCLC). We quantified calcifications in the coronary arteries and aorta and investigated their relationship with overall survival (OS) in patients treated with definitive RT (Def-RT) or post-operative RT (PORT). Materials and methods: We analyzed 263 NSCLC patients treated from 2004 to 2017. Calcium burden was ascertained with a Hounsfield unit (HU) cutoff of > 130 in addition to a deep learning (DL) plaque estimator. The HU cutoff volumes were defined for coronary arteries (PlaqueCoro) and coronary arteries and aorta combined (PlaqueCoro+Ao), while the DL estimator ranged from 0 (no plaque) to 3 (high plaque). Patient and treatment characteristics were explored for association with OS. Results: The median PlaqueCoro and PlaqueCoro+Ao was 0.75 cm3 and 0.87 cm3 in the Def-RT group and 0.03 cm3 and 0.52 cm3 in the PORT group. The median DL estimator was 2 in both cohorts. In Def-RT, large PlaqueCoro (HR:1.11 (95%CI:1.04-1.19); p = 0.008), and PlaqueCoro+Ao (HR:1.06 (95%CI:1.02-1.11); p = 0.03), and poor Karnofsky Performance Status (HR: 0.97 (95%CI: 0.94-0.99); p = 0.03) were associated with worse OS. No relationship was identified between the plaque volumes and OS in PORT, or between the DL plaque estimator and OS in either Def-RT or PORT. Conclusions: Coronary artery calcification assessed from RT planning CT scans was significantly associated with OS in patients who underwent Def-RT for NSCLC. This HU thresholding method can be straightforwardly implemented such that the role of calcifications can be further explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...